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In this paper, an exact step-coupling theory is developed to describe the modes coupling behavior and
lightwaves propagation for the power exchange between the waveguide modes in geometrical variation pho-
tonic crystal waveguide. The exact step-coupling theory provides a general description of the mode-coupling
mechanism for light waveguide with geometrical variation with complete set of equations and solutions. The
coupling equations of the exact step theory are derived and compared with the scattering matrix method, where
simulation results show good agreement with an error of less than 2.2%. Subsequently, the coupling equations
are applied to different case studies such as slab tapered waveguide and lossy “turn-on” waveguide. The
transmission spectrum and field pattern distribution show that the lossy waveguide has a large radiation loss
with an average transmission efficiency of less than 5%. The slab tapered waveguide can have more than 90%
transmission efficiency with the convex curvature. The exact step-coupling theory can be applied to a vast
range of geometrical variation photonic crystal based waveguides and it has quick and accurate convergence

simulation results.
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I. INTRODUCTION

In the last two decades, a new field of research called the
photonic crystal (PC)"? has emerged. By introducing a row
of defect structures into the bulk PC, the translational sym-
metry is broken and defect mode(s) are introduced into the
photonic band gap (PBG). The lightwave is only allowed to
propagate in the row defect sites. These photonic crystal
based waveguides (PCWGs) are reported®* that can guide
light around sharp corners with very low transmission loss.’
By incorporating with other defect structures, a series of
PCWG based devices are innovated such as directional cou-
pler, optical filter, wide-angle splitters, and nonlinear
amplification.b~1°

However, many challenges arise in the aspects of design,
fabrication, characterization, and measurement for the nar-
row single mode PCWG. Apart from these, it is also impor-
tant for high coupling efficiency between the light source and
PCWG. The different waveguide shape and size cause large
impedance mismatch between the light source and PCWG,
which resulted in a large amount of lightwaves reflection and
scattering.

In order to achieve high coupling efficiency between the
light source and narrow PCWG, many coupling
techniques!'~!7 have been developed to improve the coupling
transmission efficiency. Among these coupling techniques,
the photonic crystal tapered waveguides (PCTWs)!'823 are
often used. The guiding mechanism in PCTW is based on the
presence of guided modes in photonic band gap, which is a
different concept from conventional dielectric taper.

The advantages of PCTW are as follows: first, shorter
taper length can be used to couple lightwaves!'® from source
to PCWG. Second, impedance mismatch is reduced between
PCTW and PCWG due to identical structural definition.
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Third, the curvature of the taper?! can be manipulated to
obtain higher coupling efficiency. Fourth, PCTW may also
support a larger range of frequencies compared to the con-
ventional dielectric tapered waveguide.?*

For high effective coupling of the PCTW, two conditions
to be satisfied are the following: first, at least one transmitted
mode must be contained present in every part of the tapering
section so as to ensure transmission through the tapering
section. Second, the propagating modes must lie in the pho-
tonic band gap for every intermediate section of the PCTW
so that the propagating modes are true guided modes and do
not leak to the periodic surrounding.

To investigate the coupling behavior of different modes
along the PCTW, semianalytical methods are formulated to
explain the intercoupling mechanism and characteristics.
Various semianalytical methods are available to analyze the
mode-coupling and propagation behavior in tapered
waveguides. One of the common semianalytical methods is
the coupled mode theory,?>6 which expands the electromag-
netic field components into the eigenmodes of a waveguide
and solve for the coupling amplitudes the geometrical varia-
tion waveguide. Together with perturbation theory, the
coupled mode theory convergences very fast for gradual geo-
metrical variation waveguide with gradual slope.”> However,
limitations occur for taper with steep slope because higher
order corrections are required to achieve convergence to ex-
act solutions. The other analytical methods such as the beam
propagation methods?’ and the multipole method?®?* also
have been developed. The beam propagation method is easy
to implement and is an efficient modeling tool for lightwave
propagation calculation. However, its limited ability to accu-
rately predict the backward propagation lightwaves and com-
plicated interference of phase variation make it difficult for
application in geometrical variation waveguide. For high-
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index contrast waveguide, the multipole method!”!® can be
applied to analyze the eigenmodes with high numerical ac-
curacy but it does not allow perturbative formulation. Hence,
it is difficult to use the multipole method to explain the in-
termodal coupling behavior in the PCTW.

Step-theory method®3! is another popular theory for the
analysis of waveguide with geometrical variation. This
method divides the taper structure into piecewise strip called
steps. Field components between steps are matched by im-
posing boundary conditions and then solved rigorously. The
advantages of the step-theory are as follows: first, it studies
the coupling mechanism between different propagating
modes. Second, it is very simple to use for tapered wave-
guide. Third, it can calculate the transmission and reflection
for different taper structures with high convergence rate and
accuracy. The main drawback for the step-theory method is
that when the taper length increases, the number of steps also
increases. As a result, a longer computation time is required.
Nevertheless, it is still useful for investigating the mode cou-
pling and interaction in geometrical variation waveguide.

A modified step theory?! was developed by incorporating
Bloch theorem into the original step theory. In the course of
derivation, several assumptions and approximations are
made. These assumptions and approximations limit the ap-
plication of the modified step theory to long length taper or
slow taper. In this paper, a set of generalized coupling equa-
tions incorporating the step theory is derived and the inter-
modal coupling behavior for different waveguides will be
investigated.

In the modified step theory, the intermodal coupling be-
tween the reflected modes is considered negligible for tapers
structures with gradual slope, where the change in propagat-
ing wave vector AB is very slow. However, this is not valid
for short length tapers, as well as taper structures with fast
changing slope along the tapering direction because A is
relatively large. There is substantial amount of back reflected
power in the tapered waveguide.

The second assumption states that the coupling between
radiation modes and the guided modes in the tapered wave-
guide is negligible operating frequencies within the PBG.
However, the guided modes operating near the edge of the
PBG are subjected to possible mode coupling with the radia-
tion mode in the bulk continuum.’'32 Therefore, the modi-
fied step theory fails to provide an accurate modeling of the
transmitted power for the PCTW near the edge of the PBG.

In the third assumption, power loss coupling between the
two guided modes is neglected because the reflection loss is
assumed to be the main loss component.33 However, for
longer taper, the reflection loss is reduced significantly due to
slower change in the propagating wave vector, (8. In this
case, the intermodal coupling loss between the two guided
modes dominates. The intermodal coupling occurs between
one guided mode and another guided mode or radiation
mode near the edge of the PBG. Therefore, power loss
known as intermodal loss is observed.

In this paper, the objective is to rigorously derive a set of
general coupling equations to describe the intermodal cou-
pling behavior and characteristics of lightwaves in periodic
geometrical variation PC structures. The structure of the pa-
per is organized as follows: first, the solutions for the field in
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FIG. 1. Definition of ideal waveguide and local waveguide.

the waveguide are expanded in local normal modes and the
step-theory principle is derived to obtain generalized cou-
pling equations. Subsequently, the convergence of the cou-
pling equations will be discussed. This is followed by a case
study of the exact coupling equations of the step theory to
photonic crystal slabs waveguide and lossy PCWG. The
simulation results obtained using the exact step-coupling
theory will be discussed.

II. EXACT STEP-COUPLING THEORY

Before deriving the coupling equations for the exact step-
coupling theory, it is essential to discuss the description of
the electromagnetic fields in geometrical variation
waveguide.**—3® Using the normal modes, it requires the se-
lection of the type of reference waveguide structure. There
are two ways of setting the waveguide reference for the field
description as shown in Fig. 1. The solid line shows the
geometrical variation dielectric waveguide with varying core
width. The normal field component of the varying width
waveguide can be expanded in term of modes of the ideal
waveguide shown as the dash line. This representation is
called ideal waveguide normal mode representation. One
characteristic of the representation is that the coefficients of
the electromagnetic fields are function of z but the field com-
ponents are constant.

There is an alternate way of describing the field compo-
nents by expanding the fields in terms of modes belonging to
a fictitious waveguide, which coincides locally at all the
points of the waveguide. This means considering the fields
for all points along the geometrical variation waveguide, as
represented by the dash-dotted line in Fig. 1. At this point,
the fields are expressed in terms of a hypothetical waveguide
formed by the two dash-dotted lines. The normal modes of
the hypothetical waveguide vary in width as a function of z.

Both types of field expansions have their own advantages
for solving different types of waveguide variations. The field
expansion in term of modes of an ideal waveguide is more
preferred for waveguides with perfect geometries but refrac-
tive index variations. The coupling coefficients of ideal mode
expansion are simple and can be computed easily. On the
other hand, the coupling coefficients of electromagnetic field
for local mode expansion are more complicated than the
ideal mode waveguide because it considers the waveguide
variation locally. The local mode expansion is more useful
for a waveguide with geometrical variation than the ideal
mode expansion. It is because a better description and analy-
sis of the intermodal coupling behavior in geometrical varia-
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FIG. 2. Schematic diagram of the electromagnetic field compo-
nents in two waveguides with different widths.

tion waveguide can be presented. Besides, local normal
modes expansion has an additional advantage for PCTW as it
is easy and simple to apply.

In this paper, the mode coupling in geometrical variation
waveguide, specifically tapered waveguide, is seen as the
propagation between waveguides of different widths. Figure
2 shows the schematic representation of the field components
at the interface of two different waveguide widths. The
boundary condition state of the electromagnetic field must be
continuous across the interface. This is exceptional for the
case of an ideal perfect conductor or superconductor medium
on either side of the interface.’

For derivation of the coupling equation for the exact step-
coupling theory, only the transverse components of the fields
are required. Expanding the electromagnetic fields in series
to account for the guided mode, the fields are expressed as

E(x,y,2) = 2, p2)E,(x,y)exp(=ih,2), (1)

H,(x,y,2) = 2 q,(0H,(x,y)exp(= ith,2), (2)

where ¢, is the propagation constant of the guide mode v.
The series expansion of the transverse mode field vector in
Eqgs. (1) and (2) applies to all modal polarizations, either TM
or TE modes. The summation covers the entire guided modes
of the waveguide as well as the integral over the entire bulk
continuum range of radiation modes. From Egs. (1) and (2),
the amplitude coefficients, p,, and ¢,, are used to account for
the z component of the electric field and magnetic field, re-
spectively. The direction dependences of the electric and
magnetic field p, and g, amplitude coefficients are omitted
for simplicity. After applying the series field expansion into
the curl Maxwell equations, the following expressions are
obtained as
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X [E g,H,, exp(- i%z)] =—iweoX, p,E,, exp(—ith2),

(3a)

X [E p.E. exp(= iwyz)] =iopg, ¢, H,; exp(=igh2).

(3b)

By expanding the operator V into the form V=V, +e.(d/dz),
the following expressions are obtained:

1
E {(m)vt X[V, X p,E, exp(=ihz)]

14

+e, X

dlg H, exp(=if,2)]
Jz

= —iwep,E,, exp(=ih,2), (4a)

1
E {_ (E)Vt X[V, X q,H,, exp(-i,2)]

v

v s 2w cxp(= iwvz)]}
; 9z

=D iopog H, exp(=i,2). (4b)

The symbols V, and e, are the transverse and longitudinal
components of V, respectively. From this point, the exponen-
tial components are omitted so as to simplify the notation for
a clearer derivation. However, it is understood that this ex-
ponential component is added to the field expression. Be-
cause the expansion of the electromagnetic field is based on
the local normal modes, the local field modes E and H are
functions of z, contrary to the ideal mode expansion. By
expanding and solving for the variable in the derivatives, Eq.
(4) can be simplified as

[ H
Z{ ip,,+ qv](eZXH,,,)+(q,,)< . J ”’)}:o,
L Jz Jz

v

(5a)
| E,
E { l('IVwV 5Vfi| (6 X EV[) + (%)( J )} =0.
v L Z
(5b)

Equations (5a) and (5b) show the field expansion of the gen-
eralized Maxwell equation with the amplitude coefficients
for mode v. In order to obtain the coupling equation relating
the waveguide modes of two different cross-sectional widths,
orthogonal relation is applied. The expression for this rela-
tion is given by®

ff (E,,,XH Ddxdy = 25,,MPL/I”— (6)
Wl

where the subscripts o and v refer to the modes number at
different cross-sectional waveguide widths. The double inte-
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gral implies that the transverse electromagnetic field spans
over the x and y transverse directions. The symbol 9, indi-
cates the Kronecker’s delta expression for discrete guided
modes in the photonic band gap. For coupling between
guided modes and the bulk continuum of the radiation modes
outside the photonic band gap, it is the Dirac delta function.
The ratio B,,/|8,] is used to indicate whether the mode cou-
pling involves the radiation modes. When pure guided mode
in the photonic band gap is considered, the ratio indicates +1
because the S values are real positive quantities. When the
coupling involves the radiation mode that has imaginary B
values, the ratio is complex and therefore the coupling equa-
tions are complex as well. P is the power factor of the propa-
gating lightwaves.

To apply the orthogonal relationship, the scalar product of
Eq. (5a) is taken with the complex conjugate of the mode
electric field, E; After applying the triple product vector
identities and taking the integral over the transverse axis, the
Maxwell equation is finally simplified as

> [ipydfﬁ &&q;]f J e+ (H, X E})dxdy

s [

It is not necessary to include the subscript 7 in Eq. (7) be-
cause the transverse field components are considered and the
longitudinal components do not contribute to the z compo-
nents of the cross product. Based on the orthogonal relation-
ship in Eq. (6), Eq. (7) is simplified as

)dxdy. (7)

. 99
bt~ 1= 2 R (8)
where the coupling coefficient R, is given as
= |dxdy. 9

The coupling coefficient R,,, means the coupling of the mode
label v to the mode u. Using the same procedure for Eq. (5b)
by taking the scalar product with H;, it is expressed as

. p
Wpdu+ = 2 Sy (10)
where the coupling coefficient S, is given as
il [
S, = dxd 11
“= by, y. (11)

The series expansion of the electromagnetic field in the Max-
well equation gave two sets of coupling equations [Egs. (8)
and (10)] that contain the field amplitude coefficients, p and
g. When S, and R,, are zero (absence of coupling), the
amplitude coefficients p and ¢ can be solved. After trans-
forming the first-order differential equations into the second
order through internal substitution and solving, the field am-
plitude coefficients p, and g,, are obtained as
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Pu= pif) = c ) exp(— i,z) (12a)

Py =p£;) = cL—) exp(iy,z) (12b)
9u=4y = exp(=i,2) = p})’ (13a)
q,=4)=-c exp(iyy,z) =-p\; (13b)

The p and g coefficients are slow traveling wave components
of electromagnetic field. When substituting Egs. (12) and
(13) into Egs. (1) and (2), respectively, the exponential term
is not included. There exist two possible solutions for each of
the amplitude coefficients, p,, and g,. The plus superscript
(+) and the minus superscript (=) indicate a traveling wave
in the positive or negative z direction. From Egs. (12a) and
(13a), it can be seen that the first set of solutions for the
amplitude coefficients g, and p,, are identical. However, the
second set of solutions is differentiated by the presence of a
negative sign. It is to provide an explanation for the use of a
different amplitude coefficient for the magnetic-field expan-
sion. It is because the sign for backward traveling transverse
magnetic field is reversed. On the other hand, the single am-
plitude coefficient is used to describe the transverse (z) field
components for the electric field in both the forward and
backward directions and another coefficient for the magnetic
field. This is justified by the fact that each mode must behave
as an entity.>? According to the field theory, all field compo-
nents of each mode must change at the same rate since oth-
erwise the mode will lose its identity. According to Egs. (12)
and (13), the mode field can be defined as

B =B, (14a)

B =-B,. (14b)
El=E=E,, (14c)
H)=-H"=-H,. (144)

From the solutions of Egs. (12) and (13), it can be seen that
the forward and backward propagating waves can be sepa-
rated by the transformation equation expressed as

) 4 )

Pu=P,. +Pu s (15a)

q,=p\"-p. (15b)

Substituting Eq. (15) into Egs. (8) and (10), the coupling
equations in terms of the forward and backward traveling
waves can be expressed as
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9 9 =)
_pIL+lep(+) {_pﬂ__

lﬂﬂpﬁf)] =2 R, (p} -},

9z 9z
(16a)
*) )
J J
T i)+ {—’;“— ~ ity )} =2 8,00 +p0).
z p

(16b)

Adding and subtracting Egs. (16a) and (16b) together, the
coupling equations for the forward and backward waves can
be obtained as

apt Ny
_M_é’z uﬂlu_p(” + E ﬂVLJ')p(;) + 19(;,; )p(y ), (17a)
s ) (), )

s — S =iyp, +E ﬁm p,, +19 p,’, (17b)

where U represents the overall coupling coefficient between
the forward and backward waves. It relates to the coupling
coefficients R,,, and S, expressed as

195,';‘,:7) =ayR,, +S

vp
_ n éxH(‘)’)

=[iﬂ%ffez-<Eﬁf‘) X —* )dxdy}
2Py dz

xl{%ff ( XH(“) )dxdy, (18)
2Py

where « and vy indicate the directions of the lightwaves in
waveguide. When it is expressed as a factor, it has a value of
+1 or —1. When it is a positive or negative sign, it indicates
the direction of the coupling coefficient that is being evalu-
ated. From Egs. (17a) and (17b 1t is observed that the am-
plitude coefficients of p ) and p ) are actually rapidly vary-
ing functions of z 1n the absence of coupling. Hence, the
parameters cﬁf and ¢ 2 ) are constant in the absence of cou-
pling. However when there is coupling between modes c( +)
and ¢©), their derivatives are present. Substituting p,; () d

p( ) 1nto Eq. (17), the coupling equation is obtained as

ﬂ (++
=2 90 expliz( - 1)
+ 907l expliz(y, + 4,1, (19a)
J
—;g— 00 explizv+ )]
— 907 expliz(y, - ¥,)]. (19b)

Equation (19) presents the general case of the coupling equa-
tions. It is important to highlight in Eq. (19) the absence of
integral at the exponential phase coefficient. In contrast,
other coupling equations® derived by different methods have
an integral due to continuous evaluation of the phase coeffi-
cient. This absence of integral at exponential coefficient is
due to the discrete nature of the exact step-coupling theory. It

PHYSICAL REVIEW B 80, 035101 (2009)

can provide a deeper understanding of the coupling mecha-
nism for the geometrical variation waveguide section and
can be easily simulated.

A. Simplification of the overall coupling coefficient J

Based on the exact step-coupling equations shown in Eq.
(19), the various intermodal coupling mechanisms of PCTW
can be described and modeled. However, the forms for the
overall coupling coefficient in Eq. (19) look rather awkward
due to the presence of the curl terms. This makes it rather
inconvenient to evaluate the exact step-coupling equation
shown in Eq. (19). Therefore, a transformation is proposed to
simplify the overall coupling coefficient 9,,. At the begin-
ning of the derivation, the transverse part of the electromag-
netic field components is used to directly derive the coupling
equations. However, the longitudinal component is substi-
tuted into Egs. (1) and (2) and then simplified with the local
mode solutions that can be expressed as

V,XH,

—ip, (e, X H,) =—iweE ,, (20a)

V., XE,-i,(e; XE,)=iwuH,. (20b)
It is noted that the local mode field does not satisfy these
field equations. This can be overcome when the summation
of all the modes is included in the final coupling equation as
shown in Eq. (19). Therefore, the electromagnetic fields in
Eq. (20) in complex conjugate form with the « superscript

are expressed as

VX HL — i (e, x H'Y) = - iweE,”,  (21a)
V, X E? =iy (e, X E\”) =iwuH}¥.  (21b)

To obtain an expression that looks like the right side of Eq.
(18), first take the scalar product of Eq. (21a) with the de-

rivative —dES])/dz and Eq. (21b) with dHS/V)/dz. Then apply
the triple product vector identities and adding up, it is ob-
- x(a) O';E()’)
f— llrlllu, ez . az
aE(V)
+V,- H*(“) X —— | + L EM@ ],
&z 0z K
(22)

=iwe

tained as
()
& H*(“)) (aH—” « E*<“>>
Jz w
JHY
dz

#(a)

The left side of Eq. (22) has the same form as the right side
of Eq. (18). On the right of Eq. (22), the operator V, only
operates on the electromagnetic field but not on its deriva-
tive. It is desirable to let V, operate on all the field terms so
as to apply the divergence properties to eliminate it. There-
fore, when Eq. (20) is set to be dependent on the y parameter
for the mode label v and then the derivative is taken with
respect to z, it is obtained as
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0H(7) 0H(7) ()
V, X —~ —izﬂ@(ez X ZV —i(e, X H)— dj
JEY de
=—iwe—— —iwE)— (23a)
Jz 0z
o'?E(”) &E<7) (y)
V, X — — i e, x — | —i(e, x E)— Wy
Z 9z
aH()’)
=iop (23b)
a9z

From Eq. (23), it can be seen that the phase coefficient ¢, is
a function of z. At the moment, this term is left intact, but in
the later part, it will vanish. Equation (23) also shows that
the dielectric constant € is also a function of z. This term is
important and accounts for the dielectric discontinuities in
the periodic PC structures. Again after taking the scalar prod-
uct of Eq. (23a) with E(®" and Eq. (23b) with ~H\¥" and
adding the resultant equations, the sum is obtained as

(7E§,7) . aH(y)
"‘/’(’){“' (2w (g M

aE()’)
=—iwe—2% . E*'@
0z "
aH(‘}')
1) H*(a la)E(”) E*(a . (24)
Jz 9z

The left side of Eq. (24) is the same form as Eq. (18) for the
overall coupling coefficient. Adding Egs. (22) and (24) and
taking double integral, the resultant expression is obtained as

() () E(y #(a)
ff’(w"‘”u Jea | 75, < Ha
aH(?’)
o dxdy
aE()’) aH (y)
JJ *(“) X —2 | +| —= X E*(“) dxdy
Jz 0z

(»
e, [(H:(“) X Es,y))

+ (E*(“) X

) 1%
+(HY x E;‘f“b]dxdy—f f i} -l dudy.
4

(25)

The left side of Eq. (25) is identical to the overall coupling
coefficient ¥ and is multiplied by a factor of the phase dif-
ference between the modes v and u. On the right side of Eq.
(25), there are three terms, two of which would disappear by
applying the orthogonal condition and divergence theorem.
The first term is given as

PHYSICAL REVIEW B 80, 035101 (2009)

aE(V aH (y)
ffV,- *(“)X +|——XE, (@ ) | dxdy.
0z 0z

(26a)

These divergence terms in Egs. (22) and (24) complement
each other. When it is taken double integral over the xy
plane, the divergence can be converted from the surface in-
tegral to the line integral around the waveguide, which is
called the Strokes’ theorem. The line integral vanishes for all
guided modes, for all radiation modes and guided-radiation
modes for v»# u. Hence, the first term does not contribute to
the coupling coefficient. The second term is given as

J f i— .- [(H, X E) + (HY X E}\*)]dxdy.
dz ~ H ! ! "

(26b)

It is obvious that the second term does not contribute to the
coupling coefficient because it vanishes by applying the or-
thogonal relationship in Eq. (6) for the guided modes as well
as the radiation modes. If v+ u, the third term is given as

de
EY @2
fjle,}' -E, azdxdy.

It defines the coupling coefficient in the scalar product form.
As mentioned earlier in the paper, the presence of curl terms
can be removed from the overall coupling coefficient in Eq.
(18) and simplified by the scalar product of the mode field.
The derivative de/dz accounts for the periodic dielectric dis-
continuities in the PC lattice. The absence of the derivative
for the magnetic permeability, Ju/dz, is because the
waveguiding material is assumed to be nonmagnetic. There-
fore, the overall coupling coefficient is re-expressed as

#(a)
oo (o) O
O = |{ffta>| 5 f f E(VY)'E;@_S"”Y-
2Py, (5, =) az
(27)

(26¢)

If v=p, all the three terms contribute to the overall coupling
coefficient 19(,,“;7). When « and vy are of different signs in the
superscript, then this implies that a mode traveling in one
direction will reflect part of its power. Equation (27) shows
that the coupling coefficient is inversely proportional to the
phase difference ((j)f-‘i)—d),@). For gradually varying geo-
metrical variation waveguide, the phase difference varied
very slowly and hence the coupling coefficient is very large
indicating almost perfect transmission of lightwaves with
negligible loss. On the other hand, an abruptly varying wave-
guide has a lower coupling coefficient due to the large phase
difference. Another point to take note is that for real value of
the phase coefficient, 1//(“)* the modular in the numerator
cancels out with the phase coefficient in the denominator.
This means that the coupling between the guided modes is
dependent on the phase difference. However, the coupling
between radiation and guide modes does not cancel out. A
fraction of power will also be loss to the radiation coupling.

In the next section, some issues that are concerned with
the backward propagating waves will be discussed. This is
because backward propagation waves are inevitable in all
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geometrical variation structures. Therefore, it is important to
understand the backward propagation waves for optimum
coupling efficiency in tapered waveguide.

B. Backward propagating waves

In the whole derivation process, the backward traveling
wave is not specifically discussed. It is natural to expect the
presence of the backward traveling in any general solution of
waveguide transmission. However, for the gradually varying
waveguides, the backward propagating waves can be ne-
glected. The coupling equation in Eq. (17) can be simplified
as

(+) =)

—az"— exp(—ih,z) - —a’;— exp(ii),z)

=2 Ry[cl exp(=i,2) - ¢ expliy2)],

(28a)
ac ) act) )
_az#_ exp(—i,z) - —&Z"— exp(ith,z)
=> Svﬂ[cgf) exp(—i,z) + ) exp(i,2)].
(28b)

When Eq. (28) is applied to the taper waveguide with a
gradual curvature, most of the coupling power is concen-
trated in the forward direction while the back reflected power
(power flow in the backward direction) is very small. In this
case, it is assumed that the reflected power can be neglected
and then it has the amplitude coefficient ciz)=0. However,
this has caused some contradiction in Eq. (28) because now
the derivative of ciz) is automatically zero. Substituting ciz)
into Eq. (28), it is obtained as

R,y=S,, (28¢)

The above equation is rather contradicting for the coupling
coefficients, R,,, and S,,,. If this is the case, then either of the
equations in Eq. (28) appears to be redundant. The main
reason why this issue is due to the assumptions made in the
derivative of the backward traveling wave, cE;). The deriva-
tive of amplitude coefficient ciz) needs to be considered. Ex-
pressing the backward amplitude coefficient ciz) in terms of
cif), the coefficient of the backward amplitude can be ex-

pressed as
Z] ac(+)
—a'“— exp(=2i,2)dz. (29)
Z

<0

ci;)(z) =-

The amplitude coefficient of backward traveling waves ciz) is
dependent on the derivatives of the forward propagating am-
plitude coefficient, &cij)/ dz. The backward waves cannot
build up if the taper curvature has a gradual slope and ci;)
~0. The exponential factor, exp(~2i,z), cancels the oscil-
lation that arises from its own rapid oscillation. However,
this does not give a good reason to neglect the derivative of
ci,f) even though it does not grow to appreciable values.
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C. Radiation and guided mode coupling

In the previous section, the exact step-coupling theory is
for coupling between the guided modes. However, there are
other couplings between radiation and guided modes near the
band edge. Hence, the coupling equations are modified.
From Egq. (6), the series expansion of the electromagnetic
field is re-expressed as

©

E,= 2 p,E, exp(=ih,2) + f PoE i exp(=iy,z)dp,
v 0

(30a)

[

Ht = 2 qu vt exp(— ll//VZ) + f QpHpt exp(— “J/pZ)dP
v 0

(30b)

Equation (30) shows the full series expansion of the electro-
magnetic field including the radiation modes (integral form)
and guided modes (summation form). Previously, the field
expansion has real guided mode in the tapering section and
the radiation mode expression is hidden. The radiation mode
is only considered along the x direction when calculating the
coupling efficiency at the band edge. The power transmitted
through the “lossy” waveguide is given as

P=P| 2 (PP -0 - f <|cg+>|2—|c§;>|2>dp].
v 0

31)

According to Eq. (31), the radiated power is subtracted from
the transmission power. This is because lightwave power
leaks into the crystal lattice when propagating through the
lossy taper. At the reflection section (the section that contains
a band gap), the coupling amplitude of backward propagat-
ing light is much larger than the forward amplitude, cgf)
>c§,+). The integral extends over the whole propagating ra-
diation modes. Since most light is reflected, it is expected
that the radiation loss is always in the backward direction.
Since the amplitudes cf}_) and cg_) are larger than their posi-
tive counterparts, it is expected that the power P, is negative.
This implies that lightwaves are flowing backward.

D. PC structure with vertical mode confinement

The three-dimensional (3D) transmission of lightwaves in
the PC slab is modeled by using the exact step-coupling
theory. The coupling equations are quite similar to the two-
dimensional (2D) PC structure. However there are two dif-
ferences between the 3D and 2D models. First, the PC slab
has a slightly different band diagram as compared to the 2D
rods structure due to the presence of the lightcone. The pres-
ence of the lightcone in the dispersion band diagram has an
additional insertion of continuum radiation states. All the
modes that are above the lightcone are treated as bulk radia-
tion modes, which are extended infinitely in the region above
and below the slab. Therefore, the number of guided modes
is reduced as some of these modes may exist in the region
above the lightcone. The simulation time and computational
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resources required for the PC slab are lesser. Second, the
presence of two different guiding mechanisms in the 3D
model for the PC slab implies that the field in Egs. (3) and
(4) needs to be redefined to account for the vertical confine-
ment. However, the thickness of the slab is chosen to support
one single mode for simplicity. The electromagnetic fields
for the PC slab are redefined as

EV = |:2 ch(Ewc)eXP{— l[¢x(Z)]Z}:| + pl/yEy eXp{— i[By(Z)]Z}’

(32a)

H,= {E gor(H, Jexp{- iwx(z)]z}} + M, expl— il B,(2)]z}.
(32b)

In Eq. (32), the separation of variables is used. The sub-
scripts x and y refer to the electromagnetic fields in the trans-
verse directions and z is the propagating direction. i,(z) is
the propagation constant of the electromagnetic fields in the
x direction that represents the guiding mechanism by defects
modes in the photonic band gap. B,(z) is the propagation
constant of the electromagnetic fields in the y direction that
represents the index guiding mechanism in the PC slab.
Equation (32) shows the simplified notation where all the
guided and radiation modes in the PC slab are in the x direc-
tion while it only considers the radiation mode in air in the y
direction. The new overall coupling coefficient is given by

(@ _ wa|¢$§()* + ﬂy|
2P+ B yY)

de *
X J J &—Z[Egyeg +|E,[*ldxdy.  (32¢)

The overall coupling coefficient Eq. (32¢) does not really
differ much from the original equation shown in Eq. (27)
except the electromagnetic fields are divided into the x and y
directions. Due to the lack of symmetry in the vertical direc-
tion, the modes cannot be purely TM or TE polarized. There-
fore, the guided modes are still classified into even or odd
modes, with respect to the reflections through the horizontal
plane of the PC slab.

II1. NUMERICAL SIMULATION RESULTS AND
DISCUSSIONS

In this section, numerical case study using the exact step-
coupling equation is verified. The simulation results of the
exact step-coupling equation are compared with the simula-
tion results from the modified step-theory and the scattering
method for identical PC structure. The percentage error of
the modified step theory and the exact step-coupling equa-
tion are obtained with reference to the scattering method.
Subsequently, the exact step-coupling equations are applied
to other PC slab taper and lossy structures to simulate and
calculate the transmission efficiency.
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A. Applying the exact step-coupling model to the numerical
examples

The ¢, values are obtained from the respective band
structures, which are calculated from each step width using
the plane-wave method.3! There is a large number of ¢ val-
ues for all the modes and frequencies in each step width.
This is reduced by considering only the even field mode
distribution because the tapered waveguide is symmetric
about the x axis. The lowest order fundamental mode and
intermediate higher order modes (up to the fifth order even
mode) are considered in this paper. Such simplification re-
duces the simulation time and is effective for symmetrical
and long PC tapered waveguide.?! The transmission effi-
ciency is calculated iteratively using Eq. (27) from the first
step width at the front to the last step at the transmission
collection location for the whole tapered waveguide section.
The final field amplitude at the end of the narrow PCTW is
normalized with incident power to obtain the transmission
efficiency at different frequencies. In the simulation, the step
width is defined as one column of cell structures as shown in
Fig. 3(a).

B. Convergence of linear defect twin input/output PCTW

In this section, the exact step-coupling theory is verified
for convergence. The PC structure is the linear PCTW with a
row of defects in the tapering section shown in Fig. 3(a).?!
The structure is called a twin input/output PCTW because
the waveguide decreases in width and then opens up in the
opposite side. The parameters of the twin input/output
PCTW are given in Ref. 21. Based on the case study as
shown in Fig. 3(a), the input and output twin PCTWs are
modeled using the exact step-coupling theory and compared
with the modified step-theory and scattering matrix
method?%4%4! for verification in Fig. 3(b). The numerical
simulation results of the transmission spectrum are obtained
at the end of the input tapered waveguide as shown in Fig.
3(a). There is some deviation between the modified step
theory (in dash-dotted line) and the scattering method. This
is particularly true nearer the band edge. The simulation re-
sults of the exact step-coupling theory (in circular symbol)
are in very good agreement with the scattering method. With
reference to the scattering method,?® the numerical error for
the modified step theory is approximately 3.44%. This is
higher than the percentage error of the exact step-coupling
theory, especially nearer to the band edge as shown in Fig.
3(c). The exact step-coupling theory shows very high accu-
racy with a percentage error less than +0.28%. This is be-
cause the exact step-coupling theory is derived directly from
the Maxwell equations but the modified step theory is from
scalar waveguide solution. It also shows that the small set of
modes is enough to form a complete set for the expansion of
the tapered modes with small errors. It also shows that the
exact step-coupling theory converges and is more accurate
than the modified step theory. It also demonstrates that by
considering unperturbed taper mode up to only the fifth or-
der, it would be sufficient enough to obtain reasonably high
accuracy.
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C. Lossy photonic crystal waveguide

In this section, the exact step-coupling theory is used to
calculate the transmission spectrum of nonadiabatic and
lossy PCTW (Ref. 20) as shown in Fig. 4(a). The radius of
the rods in the cladding of the PCTW is gradually increased

' Input PCTW o PCWG L Output PCTW !
5 o 5 10a 1 9a 1 10a oo d
00 o =1 1 o 0 @
DDOOoooleleoOOOOOOOOOOQODDQOOOOO
DDODQOOIO'@OOoooooooooOODoOOoooo
ooOooOD'O:OO OOOOOOOOOOODDOOOOO'
X, O:OIOOooooooooooO(DDO 24
[=] [m] o (=} [=3 = C)IOID [a] o o o a O in) [m) a (a3 (=] =] (=] L=} o & o inl a a

Step width,
dlo o oo o0 oo o o
OOOO|OIQO DDOQOOOO
o o Q OQIQ|OOOOOODODOODOODOO 0 -
OOOODOo:OIQOOOOOOOOOOOOODDOOOOOO
oo o000 slolo o e ooacooooooag, Qoo o g
o o0 D0 T YL | ITransmission spectrum S R R,
measurement location
(a)
1.0
0.9 4
o Scattering Method
£ © | Exact Step-coupling Theory
_E — - — 'Modified Step-theory
£ 0.8 1
[}
c
s
[
0.7 4
0.6 . .
0.22 0.23 0.24 0.25 0.26
Frequency (a/\)
(b)
4
—— Modified Step-theory
— — Exact Step-coupling Theory
2
1S
5
=
@
&
g0
o
[1]
L
@
o
-2
-4 T T T
0.22 0.23 0.24 0.25 0.26
Frequency (a/\)
(c)

FIG. 3. (Color online) (a)
Structure of the twin input/output
linear defect PCTW. (b) Transmis-
sion spectrum of the twin input/
output linear defect PCTW. (c)
Percentage error for the transmis-
sion spectrum.

to form a transition structure as “turning on” the crystal.
Hereafter, this structure is called “turn-on” PCTW. The un-
perturbed rods have a r/a ratio of 0.3 with a refractive index
of 3.37. The line defects rods have a r/a ratio of 0.2. The
transmission coupling efficiency of the turn-on PCTW is ob-
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FIG. 4. (Color online) (a) Schematic of the turn-on PCTW structure. (b) Transmission spectrum of the turn-on PCTW structure. (c) Field
plot of the design showing coupling of the back reflected light to the radiation modes in the cladding.

tained from the middle of the structure using the step-
coupling theory. This PCTW structure has a very low cou-
pling efficiency in the transmission spectrum as shown in
Fig. 4(b). The low transmission coupling efficiency is due to
the absence of the guided modes in one section of the turn-on
PCTW. In order to design an effective PCTW to provide high
coupling efficiency, at least one guided mode must be present
in every intermediate section of the tapering structure. In this
turn-on PCTW structure, one section does not have at least
one guided mode of the condition. This is due to the geo-
metrical coincident of the line defect radius with the radius
of the cladding rods. Lightwaves are reflected in this part of
the turn-on section. From the physical point of view, due to
the turning effect of the cladding, the radiation modes from
the edge of bulk continuum of states above the photonic
band gap are pulled down by the increasing rod size. This
radiation mode continues to sink deeper into the band gap
along the turn-on section and then eventually crosses the
operating mode in the linear defects. Therefore, the original

mode is unguided and thus light is reflected and radiated out
resulting in low transmission over the whole spectrum.

The exact step-coupling theory can be applied to analyze
the low power transmission in Fig. 4(b). In this case, the
radiation modes play an important role and are treated care-
fully to avoid any miscalculation. Figure 4(c) shows the dis-
tribution of the back reflected field radiating out in the back-
ward direction from the reflection section. It shows the
coupling between the reflected field and the radiation field in
the turn-on section. It is clearly shown that the radiated elec-
tromagnetic field is present in the cladding of the turn-on
PCTW. Therefore, the reflected field is coupled into the bulk
radiated field in the PC structure above and below the row
defect as radiation loss.

D. Photonic crystal slab taper

Previously, all the simulation results are based on a 2D
PCTW with rods structure. For practical applications, peri-
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source

FIG. 5. (Color online) 3D diagram of the PC slab tapered
waveguide.

odic 3D PC structures are often considered due to the exis-
tent of a three-dimensional photonic band gap. However, the
fabrication of 3D periodic PC structures is a challenge be-
cause of the complexity of its process and strict alignment
requirements.*>** As such, a semi-three-dimensional PC
slab>* is proposed.

In this paper, the photonic crystal slab consists of silicon
material with refractive index 3.5. The slab thickness is
0.3 wm approximately, which ensures that the transverse
field remains single mode while being strongly guided in the
vertical direction.>* The lattice structures are made up of air
holes arranged in a triangular pattern. The radius to lattice
constant ratio is set to r/a=0.3. As a result, the photonic
band gap is in the range of normalized frequencies of 0.22—
0.275 for the TE polarization.

The PCTW structure is created using the shearing method
as that in the square rods lattice structure.?! However, due to
the difference in the lattice arrangement (which is square for
rods and triangular for holes), the holes are shifted in a dif-
ferent manner. In the square case, the horizontal and vertical
lattice vectors are perpendicular to each other. For the trian-
gular pattern, the angle between the vectors is at 60°. Hence
the shifting must maintain the lattice angle of 60°. Figure 5
shows the case of 3D linear photonic crystal slab taper
(PCST). The input width of PCST is approximately 3 wm,
which corresponds to the mode size of a tapered fiber. The
output width is a PCWG with one missing row of hole struc-
tures (W1). Figures 6(a) and 6(b) show the mode distribution
in the vertical direction and the percentage of the power
coupled into the width of 0.3 um thickness slab for a3 um
input mode size. It can be only approximately 20% of the
total power that is fed into the thin slab waveguide. The
remaining power is reflected backward to the source or radi-
ate out in the air above and below the slab.

Figure 7(a) shows the different curvatures of the tapered
waveguide such as linear, convex, and concave.?!*! Simula-
tions are performed to obtain the transmission spectra of the
linear, convex, and concave tapers for a taper length of 18a
as shown in Fig. 7(b). The transmission spectrum is calcu-
lated for the case where « and v are positive (in the forward
direction). The coupling coefficient in Eq. (32¢) is used to
calculate the transmission spectrum at the normalized fre-
quency range of 0.24-0.27. The transmission coupling effi-
ciency is normalized with respect to the amount of power
coupled into the slab. As seen from Fig. 7, the convex taper
gives the highest overall coupling efficiency due to its
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FIG. 6. (Color online) Vertical mode profile of the electromag-
netic field in the PC slab (a) back view. (b) Side view.

gradual curvature, while the concave taper gives the lowest
due to its very fast tapering rate in the front part. The linear
PCST has results in between the convex and concave taper.
This is because the linear PCST has moderate curvature. As
a result, the loss and transmission power are not as extreme
as the concave and convex tapers. As mentioned in Refs. 21
and 31 the fluctuations in the spectrum are due to the pres-
ence of multiple reflections from Fabry-Perot oscillation or
multipath interference. The concave taper has more fluctua-
tions due to the inward curvature. This results in much
higher reflections and interferences in the concave taper,
hence more fluctuations. For the convex taper, it is the op-
posite and therefore exhibits more stable spectrum. As the
taper length increases, the fluctuations will be gradually re-
duced and a stable transmission spectrum can be obtained.
This is desirable because a stable transmission spectrum al-
lows more reliable and better performance.

To further study the influence of the taper length, Fig. 8
shows the transmission efficiency of the three taper curva-
tures as a function of the taper lengths at the normalized
frequency of 0.258(a/\). The maximum taper length is
capped at 28a. This is because longer tapers defeat the pur-
pose of a compact input/output port for PC devices as well as
introducing additional radiation loss around the slab. The
beam reduction ratio for the PC slab taper is smaller, hence
shorter taper length is required to obtain high coupling effi-
ciency. From Fig. 8, it is observed that generally there are
oscillations at shorter taper lengths. This is due to the pres-
ence of a large number of interferences and reflections at the
shorter taper length. The convex taper achieves 90% cou-
pling efficiency at a taper length of 20a while the linear
reaches 90% at 26a. The coupling efficiency of the concave
taper reaches 87% at 28a. It is worth noting that although the
convex taper produces higher coupling efficiencies for both
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FIG. 7. (Color online) (a) Schematic layout of the linear, con-
vex, and concave tapers. (b) Transmission spectra of the PC slab
tapered waveguide for the linear, concave, and convex tapers at a
length of 18a.

the 2D PCTW and 3D PCST, the actual power transmission
is different and that of the PCST is slightly lower.

IV. CONCLUSIONS

In this paper, an exact step-coupling theory is developed
for calculating the transmission efficiency in geometrical
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FIG. 8. (Color online) Transmission efficiency vs taper length of
the PC slab tapered waveguide for the linear, concave, and convex
tapers.

variation PCWGs. This theory captures the essentials of the
classical coupled mode theory and the step theory and arrives
at a set of generalized coupling equations, which give a com-
plete description of the field modal behavior for the propa-
gation of lightwaves in geometrical variation PCWGs. The
effectiveness of the exact step-coupling theory is verified by
the specially chosen case studies. It demonstrates quick and
accurate convergence in dealing with the twin input/output
PCTW and linear curvature PCTW. It also matches well with
the scattering method in calculating the lossy turn-on PCTW
structures. When it is applied to the 3D PCSTs, this theory
shows good capability in predicting the transmission spectra
and the efficiencies of the linear, convex, and concave
PCSTs. Compared with the available methods, the exact
step-coupling theory is applicable to a vast range of geo-
metrical variation PCWGs, quick and accurate convergence
simulation results, as well as complete solution for the inter-
modal coupling mechanism.
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